GSO IEC TS 61400-3-2:2024
IEC TS 61400-3-2:2019
Gulf Standard
Current Edition
·
Approved on
31 January 2024
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines
GSO IEC TS 61400-3-2:2024 Files
No files are available for this standard right now!
GSO IEC TS 61400-3-2:2024 Scope
IEC TS 61400-3-2:2019 specifies additional requirements for assessment of the external conditions at a floating offshore wind turbine (FOWT) site and specifies essential design requirements to ensure the engineering integrity of FOWTs. Its purpose is to provide an appropriate level of protection against damage from all hazards during the planned lifetime.
This document focuses on the engineering integrity of the structural components of a FOWT but is also concerned with subsystems such as control and protection mechanisms, internal electrical systems and mechanical systems.
A wind turbine is considered as a FOWT if the floating substructure is subject to hydrodynamic loading and supported by buoyancy and a station-keeping system. A FOWT encompasses five principal subsystems: the RNA, the tower, the floating substructure, the station-keeping system and the on-board machinery, equipment and systems that are not part of the RNA.
The following types of floating substructures are explicitly considered within the context of this document:
a) ship-shaped structures and barges,
b) semi-submersibles (Semi),
c) spar buoys (Spar),
d) tension-leg platforms/buoys (TLP / TLB).
In addition to the structural types listed above, this document generally covers other floating platforms intended to support wind turbines. These other structures can have a great range of variability in geometry and structural forms and, therefore, can be only partly covered by the requirements of this document. In other cases, specific requirements stated in this document can be found not to apply to all or part of a structure under design. In all the above cases, conformity with this document will require that the design is based upon its underpinning principles and achieves a level of safety equivalent, or superior, to the level implicit in it.
This document is applicable to unmanned floating structures with one single horizontal axis turbine. Additional considerations might be needed for multi-turbine units on a single floating substructure, vertical-axis wind turbines, or combined wind/wave energy systems.
This document is to be used together with the appropriate IEC and ISO standards mentioned in Clause 2. In particular, this document is intended to be fully consistent with the requirements of IEC 61400-1 and IEC 61400-3-1. The safety level of the FOWT designed according to this document is to be at or exceed the level inherent in IEC 61400‑1 and IEC 61400-3-1.
This document focuses on the engineering integrity of the structural components of a FOWT but is also concerned with subsystems such as control and protection mechanisms, internal electrical systems and mechanical systems.
A wind turbine is considered as a FOWT if the floating substructure is subject to hydrodynamic loading and supported by buoyancy and a station-keeping system. A FOWT encompasses five principal subsystems: the RNA, the tower, the floating substructure, the station-keeping system and the on-board machinery, equipment and systems that are not part of the RNA.
The following types of floating substructures are explicitly considered within the context of this document:
a) ship-shaped structures and barges,
b) semi-submersibles (Semi),
c) spar buoys (Spar),
d) tension-leg platforms/buoys (TLP / TLB).
In addition to the structural types listed above, this document generally covers other floating platforms intended to support wind turbines. These other structures can have a great range of variability in geometry and structural forms and, therefore, can be only partly covered by the requirements of this document. In other cases, specific requirements stated in this document can be found not to apply to all or part of a structure under design. In all the above cases, conformity with this document will require that the design is based upon its underpinning principles and achieves a level of safety equivalent, or superior, to the level implicit in it.
This document is applicable to unmanned floating structures with one single horizontal axis turbine. Additional considerations might be needed for multi-turbine units on a single floating substructure, vertical-axis wind turbines, or combined wind/wave energy systems.
This document is to be used together with the appropriate IEC and ISO standards mentioned in Clause 2. In particular, this document is intended to be fully consistent with the requirements of IEC 61400-1 and IEC 61400-3-1. The safety level of the FOWT designed according to this document is to be at or exceed the level inherent in IEC 61400‑1 and IEC 61400-3-1.
Best Sellers From Electrical Sector
GSO 2530:2016
Gulf Standard
Energy Labelling And Minimum Energy Performance Requirements For Air-Conditioners
GSO 34:2007
Gulf Technical Regulation
LEAD-ACID STARTER BATTERIES USED FOR
MOTOR VEHICLES AND INTERNAL
COMBUSTION ENGINES
BH GSO 34:2015
GSO 34:2007
Bahraini Technical Regulation
LEAD-ACID STARTER BATTERIES USED FOR
MOTOR VEHICLES AND INTERNAL
COMBUSTION ENGINES
GSO 35:2007
Gulf Standard
Methods of test
for lead-acid starter batteries used for motor vehicles
and internal combustion engines
Recently Published from Electrical Sector
GSO IEC 61558-2-2:2024
IEC 61558-2-2:2022
Gulf Standard
Safety of transformers, reactors, power supply units and combinations thereof - Part 2-2: Particular requirements and tests for control transformers and power supply units incorporating control transformers
GSO IEC 60664-1:2024
IEC 60664-1:2020
Gulf Standard
Insulation coordination for equipment within low-voltage supply systems - Part 1: Principles, requirements and tests
GSO IEC 61936-2:2024
IEC 61936-2:2023
Gulf Standard
Power installations exceeding 1 kV AC and 1,5 kV DC - Part 2: DC
GSO IEC TS 62915:2024
IEC TS 62915:2023
Gulf Standard
Photovoltaic (PV) modules - Type approval, design and safety qualification - Retesting