ISO 20233-1:2018

International Standard   Current Edition · Approved on 23 February 2018

Ships and marine technology — Model test method for propeller cavitation noise evaluation in ship design — Part 1: Source level estimation

ISO 20233-1:2018 Files

English 13 Pages
Current Edition
42.86 BHD

ISO 20233-1:2018 Scope

ISO 20233-1:2018 specifies a model test method for propeller cavitation noise evaluation in ship design.

The procedure comprises reproduction of noise source, noise measurements, post processing and scaling. The target noise source is propeller cavitation. Thus, this document describes the test set-up and conditions to reproduce the cavitation patterns of the ship based on the similarity laws between the model and the ship. The propeller noise is measured at three stages. The measurement targets for each stage are propeller cavitation noise, background noise, and transmission loss. For the source level evaluations, corrections for the background noise and the transmission loss are applied to the measured propeller cavitation noise. Finally, the full-scale source levels are estimated from the model scale results using a scaling law.

Best Sellers

GSO 150-2:2013
 
Gulf Standard
Expiration dates for food products - Part 2 : Voluntary expiration dates
BH GSO 150-2:2015
GSO 150-2:2013 
Bahraini Standard
Expiration dates for food products - Part 2 : Voluntary expiration dates
BH GSO 2055-1:2016
GSO 2055-1:2015 
Bahraini Technical Regulation
HALAL FOOD - Part 1 : General Requirements
GSO 2055-1:2015
 
Gulf Technical Regulation
HALAL FOOD - Part 1 : General Requirements

Recently Published

ISO 4211-1:2025
 
International Standard
Furniture — Tests for surface finishes — Part 1: Assessment of resistance to cold liquids
ISO 11843-7:2025
 
International Standard
Capability of detection — Part 7: Methodology based on stochastic properties of instrumental noise
ISO 18750:2025
 
International Standard
Intelligent transport systems — Local dynamic map
ISO 4076:2025
 
International Standard
Polyphenylsulfone (PPSU) — Effect of time and temperature on expected strength